Emacs MIME Manual

by Lars Magne Ingebrigtsen

This file documents the Emacs MIME interface functionality.
Copyright (©) 1998-2015 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual”, and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual.”

Table of Contents

Emacs MIME 1
1 Decoding and Viewing 3
1.1 DISSECHION . . .ottt e 3
1.2 Non-MIME 3
1.3 Handles.o 4
14 DISplay .ottt 4
1.5 Display Customizationoiiiiiiiiiiiiiiinia... 5
1.6 Files and Directorieso 7
1.7 New VIeWerS e 8
2 CompoSingooiiiiiiii 9
2.1 Simple MML Exampleo 9
2.2 MML Definitiont 9
2.3 Advanced MML Example 11
2.4 Encoding Customizationc.ouiiiiieiiiiineniinen .. 13
2.5 Charset Translationcoou i 14
2.6 COMVEISION . o vt ottt e et e e e e 15
2.7 Flowed text . ..o 15
3 Interface Functions............................ 17
4 Basic Functions.......... 21
A1 rfC204D o 21
4.2 TEC223] o 21
4.3 1etf-drums . ..o 22
4.4 1IC204T oo 22
4.5 time-dateo 23
G e o X 26
4.7 Dasebd . ..o 26
4.8 DINhex 26
4.9 uudecode 27
T T 27
411 rfCl843 .o 27
412 Mailcap ... 27
5 Standards............. .. 29
6 GNU Free Documentation License........... 31
ADDENDUM: How to use this License for your documents 37

T Index 39

Emacs MIME 1

Emacs MIME

This manual documents the libraries used to compose and display MIME messages.

This manual is directed at users who want to modify the behavior of the MIME encod-
ing/decoding process or want a more detailed picture of how the Emacs MIME library works,
and people who want to write functions and commands that manipulate MIME elements.

MIME is short for Multipurpose Internet Mail Extensions. This standard is documented
in a number of RFCs; mainly RFC2045 (Format of Internet Message Bodies), RFC2046 (Me-
dia Types), RFC2047 (Message Header Extensions for Non-ASCII Text), RFC2048 (Regis-
tration Procedures), RFC2049 (Conformance Criteria and Examples). It is highly recom-
mended that anyone who intends writing MIME-compliant software read at least RFC2045
and RFC2047.

Chapter 1: Decoding and Viewing 3

1 Decoding and Viewing

This chapter deals with decoding and viewing MIME messages on a higher level.

The main idea is to first analyze a MIME article, and then allow other programs to do
things based on the list of handles that are returned as a result of this analysis.

1.1 Dissection

The mm-dissect-buffer is the function responsible for dissecting a MIME article. If given
a multipart message, it will recursively descend the message, following the structure, and
return a tree of MIME handles that describes the structure of the message.

1.2 Non-MIME

Gnus also understands some non-MIME attachments, such as postscript, uuencode, binhex,
yenc, shar, forward, gnatsweb, pgp, diff. Each of these features can be disabled by add an
item into mm-uu-configure-list. For example,

(require ’mm-uu)

(add-to-list ’mm-uu-configure-list ’(pgp-signed . disabled))

postscript

PostScript file.
uu Uuencoded file.
binhex Binhex encoded file.
yenc Yenc encoded file.
shar Shar archive file.

forward Non-MIME forwarded message.

gnatsweb Gnatsweb attachment.

pgp-signed
PGP signed clear text.

pgp—encrypted
PGP encrypted clear text.

pgp-key PGP public keys.

emacs-sources
Emacs source code. This item works only in the groups matching mm-uu-emacs-
sources-regexp.

diff Patches. This is intended for groups where diffs of committed files are automat-
ically sent to. It only works in groups matching mm-uu-diff-groups-regexp.

verbatim-marks
Slrn-style verbatim marks.

LaTeX LaTeX documents. It only works in groups matching mm-uu-tex-groups-
regexp.

4 Emacs MIME Manual

Some inlined non-MIME attachments are displayed using the face mm-uu-extract. By
default, no MIME button for these parts is displayed. You can force displaying a button using
K b (gnus-summary-display-buttonized) or add text/x-verbatim to gnus-buttonized-
mime-types, See Section “MIME Commands” in Gnus Manual.

1.3 Handles
A MIME handle is a list that fully describes a MIME component.
The following macros can be used to access elements in a handle:

mm-handle-buffer
Return the buffer that holds the contents of the undecoded MIME part.

mm-handle-type
Return the parsed Content-Type of the part.

mm-handle-encoding
Return the Content-Transfer-Encoding of the part.

mm-handle-undisplayer
Return the object that can be used to remove the displayed part (if it has been
displayed).

mm-handle-set-undisplayer
Set the undisplayer object.

mm-handle-disposition

Return the parsed Content-Disposition of the part.
mm-get-content-id

Returns the handle(s) referred to by Content-ID.

1.4 Display

Functions for displaying, removing and saving.
mm-display-part
Display the part.
mm-remove-part
Remove the part (if it has been displayed).
mm-inlinable-p
Say whether a MIME type can be displayed inline.
mm-automatic-display-p
Say whether a MIME type should be displayed automatically.

mm-destroy-part
Free all resources occupied by a part.

mm-save-part

Offer to save the part in a file.
mm-pipe-part

Offer to pipe the part to some process.

Chapter 1: Decoding and Viewing 5)

mm-interactively-view—-part
Prompt for a mailcap method to use to view the part.

1.5 Display Customization

mm-inline-media-tests
This is an alist where the key is a MIME type, the second element is a function
to display the part inline (i.e., inside Emacs), and the third element is a form
to be evaled to say whether the part can be displayed inline.

This variable specifies whether a part can be displayed inline, and, if so, how
to do it. It does not say whether parts are actually displayed inline.

mm-inlined-types
This, on the other hand, says what types are to be displayed inline, if they
satisfy the conditions set by the variable above. It’s a list of MIME media

types.

mm-automatic-display
This is a list of types that are to be displayed “automatically”, but only if
the above variable allows it. That is, only inlinable parts can be displayed
automatically.

mm-automatic-external-display
This is a list of types that will be displayed automatically in an external viewer.

mm-keep-viewer-alive-types
This is a list of media types for which the external viewer will not be killed
when selecting a different article.

mm-attachment-override-types
Some MIME agents create parts that have a content-disposition of ‘attachment’.
This variable allows overriding that disposition and displaying the part inline.
(Note that the disposition is only overridden if we are able to, and want to,
display the part inline.)

mm-discouraged-alternatives
List of MIME types that are discouraged when viewing ‘multipart/alternative’.
Viewing agents are supposed to view the last possible part of a message,
as that is supposed to be the richest. However, users may prefer other
types instead, and this list says what types are most unwanted. If, for
instance, ‘text/html’ parts are very unwanted, and ‘text/richtext’ parts
are somewhat unwanted, you could say something like:

(setq mm-discouraged-alternatives

>("text/html" "text/richtext")

mm-automatic-display

(remove "text/html" mm-automatic-display))
Adding "image/ .*" might also be useful. Spammers use images as the preferred
part of ‘multipart/alternative’ messages, so you might not notice there are
other parts. See also gnus-buttonized-mime-types, Section “MIME Com-
mands” in Gnus Manual. After adding "multipart/alternative" to gnus-

Emacs MIME Manual

buttonized-mime-types you can choose manually which alternative you’d like
to view. For example, you can set those variables like:

(setq gnus-buttonized-mime-types
>("multipart/alternative" "multipart/signed")
mm-discouraged-alternatives
>("text/html" "image/.*"))

In this case, Gnus will display radio buttons for such a kind of spam message
as follows:

1. (%) multipart/alternative () image/gif

2. (%) text/plain () text/html

mm-inline-large-images

When displaying inline images that are larger than the window, Emacs does
not enable scrolling, which means that you cannot see the whole image. To
prevent this, the library tries to determine the image size before displaying it
inline, and if it doesn’t fit the window, the library will display it externally
(e.g., with ‘ImageMagick’ or ‘xv’). Setting this variable to t disables this check
and makes the library display all inline images as inline, regardless of their size.
If you set this variable to resize, the image will be displayed resized to fit in
the window, if Emacs has the ability to resize images.

mm-inline-large-images—-proportion

The proportion used when resizing large images.

mm-inline-override-types

mm-inlined-types may include regular expressions, for example to specify that
all ‘text/.*’ parts be displayed inline. If a user prefers to have a type that
matches such a regular expression be treated as an attachment, that can be
accomplished by setting this variable to a list containing that type. For example
assuming mm-inlined-types includes ‘text/.*’, then including ‘text/html’ in
this variable will cause ‘text/html’ parts to be treated as attachments.

mm-text-html-renderer

This selects the function used to render HTML. The predefined renderers
are selected by the symbols gnus-article-html, w3m', 1links, 1ynx,
w3m-standalone or html2text. If nil use an external viewer. You can also
specify a function, which will be called with a MIME handle as the argument.

mm-inline-text-html-with-images

Some HTML mails might have the trick of spammers using ‘’ tags. It is
likely to be intended to verify whether you have read the mail. You can prevent
your personal information from leaking by setting this option to nil (which is
the default). For emacs-w3m, you may use the command t on the image anchor
to show an image even if it is nil.?

L See http://emacs-w3m.namazu.org/ for more information about emacs-w3m

2 The command T will load all images. If you have set the option w3m-key-binding to info, use i or I

instead.

http://emacs-w3m.namazu.org/

Chapter 1: Decoding and Viewing 7

mm-w3m-safe-url-regexp
A regular expression that matches safe URL names, i.e., URLs that are unlikely
to leak personal information when rendering HTML email (the default value is
‘\\‘cid:’). If nil consider all URLs safe. In Gnus, this will be overridden ac-
cording to the value of the variable gnus-safe-html-newsgroups, See Section
“Various Various” in Gnus Manual.

mm-inline-text-html-with-w3m-keymap
You can use emacs-w3m command keys in the inlined text/html part by setting
this option to non-nil. The default value is t.

mm-external-terminal-program
The program used to start an external terminal.

mm-enable-external
Indicate whether external MIME handlers should be used.

If t, all defined external MIME handlers are used. If nil, files are saved to
disk (mailcap-save-binary-file). If it is the symbol ask, you are prompted
before the external MIME handler is invoked.

When you launch an attachment through mailcap (see Section 4.12 [mailcap],
page 27) an attempt is made to use a safe viewer with the safest options—this
isn’t the case if you save it to disk and launch it in a different way (command
line or double-clicking). Anyhow, if you want to be sure not to launch any
external programs, set this variable to nil or ask.

1.6 Files and Directories

mm-default-directory
The default directory for saving attachments. If nil use default-directory.

mm-tmp-directory
Directory for storing temporary files.

mm-file-name-rewrite-functions
A list of functions used for rewriting file names of MIME parts. Each function
is applied successively to the file name. Ready-made functions include

mm-file—-name-delete—-control
Delete all control characters.

mm-file-name-delete-gotchas
Delete characters that could have unintended consequences when
used with flawed shell scripts, i.e., ‘|7, ©>" and ‘<’; and ‘=’, *.” as the
first character.

mm-file-name-delete-whitespace

Remove all whitespace.
mm-file-name-trim-whitespace

Remove leading and trailing whitespace.
mm-file-name-collapse-whitespace

Collapse multiple whitespace characters.

8 Emacs MIME Manual

mm-file-name-replace-whitespace
Replace whitespace with underscores. Set the variable mm-file-
name-replace-whitespace to any other string if you do not like
underscores.

The standard Emacs functions capitalize, downcase, upcase and upcase-
initials might also prove useful.

mm-path-name-rewrite-functions
List of functions used for rewriting the full file names of MIME parts. This is
used when viewing parts externally, and is meant for transforming the absolute
name so that non-compliant programs can find the file where it’s saved.

1.7 New Viewers

Here’s an example viewer for displaying text/enriched inline:

(defun mm-display-enriched-inline (handle)
(let (text)
(with-temp-buffer
(mm-insert-part handle)
(save-window-excursion
(enriched-decode (point-min) (point-max))
(setq text (buffer-string))))
(mm-insert-inline handle text)))

We see that the function takes a MIME handle as its parameter. It then goes to a
temporary buffer, inserts the text of the part, does some work on the text, stores the result,
goes back to the buffer it was called from and inserts the result.

The two important helper functions here are mm-insert-part and mm-insert-inline.
The first function inserts the text of the handle in the current buffer. It handles charset
and/or content transfer decoding. The second function just inserts whatever text you tell
it to insert, but it also sets things up so that the text can be “undisplayed” in a convenient
manner.

Chapter 2: Composing 9

2 Composing

Creating a MIME message is boring and non-trivial. Therefore, a library called mm1 has been
defined that parses a language called MML (MIME Meta Language) and generates MIME
messages.

The main interface function is mml-generate-mime. It will examine the contents of the
current (narrowed-to) buffer and return a string containing the MIME message.

2.1 Simple MML Example

Here’s a simple ‘multipart/alternative’:
<#multipart type=alternative>
This is a plain text part.
<#tpart type=text/enriched>
<center>This is a centered enriched part</center>
<#/multipart>
After running this through mml-generate-mime, we get this:

Content-Type: multipart/alternative; boundary="=-=-="

This is a plain text part.

Content-Type: text/enriched

<center>This is a centered enriched part</center>

2.2 MML Definition

The MML language is very simple. It looks a bit like an SGML application, but it’s not.

The main concept of MML is the part. Each part can be of a different type or use a
different charset. The way to delineate a part is with a ‘<#part ...>’ tag. Multipart parts
can be introduced with the ‘<#multipart ...>’ tag. Parts are ended by the ‘<#/part>’
or <#/multipart>’ tags. Parts started with the ‘<#part ...>’ tags are also closed by the
next open tag.

There’s also the ‘<#external ...>’ tag. These introduce ‘external/message-body’
parts.

Each tag can contain zero or more parameters on the form ‘parameter=value’. The val-
ues may be enclosed in quotation marks, but that’s not necessary unless the value contains
white space. So ‘filename=/home/user/#hello$ yes’ is perfectly valid.

10 Emacs MIME Manual

The following parameters have meaning in MML; parameters that have no meaning are
ignored. The MML parameter names are the same as the MIME parameter names; the
things in the parentheses say which header it will be used in.

‘type’ The MIME type of the part (Content-Type).

‘filename’

Use the contents of the file in the body of the part (Content-Disposition).
‘recipient-filename’

Use this as the file name in the generated MIME message for the recipient.

That is, even if the file is called ‘foo.txt’ locally, use this name instead in the
Content-Disposition in the sent message.

‘charset’ The contents of the body of the part are to be encoded in the character set
specified (Content-Type). See Section 2.5 [Charset Translation], page 14.

‘name’ Might be used to suggest a file name if the part is to be saved to a file (Content-
Type).
‘disposition’

Valid values are ‘inline’ and ‘attachment’ (Content-Disposition).

‘encoding’
Valid values are ‘7bit’, ‘8bit’, ‘quoted-printable’ and ‘base64’ (Content-
Transfer-Encoding). See Section 2.5 [Charset Translation], page 14.

‘description’
A description of the part (Content-Description).

‘creation-date’
RFC822 date when the part was created (Content-Disposition).

‘modification-date’
RFC822 date when the part was modified (Content-Disposition).

‘read-date’
RFC822 date when the part was read (Content-Disposition).

‘recipients’
Who to encrypt/sign the part to. This field is used to override any auto-
detection based on the To/CC headers.

‘sender’ Identity used to sign the part. This field is used to override the default key

used.
‘size’ The size (in octets) of the part (Content-Disposition).
‘sign’ What technology to sign this MML part with (smime, pgp or pgpmime)

‘encrypt’ What technology to encrypt this MML part with (smime, pgp or pgpmime)
Parameters for ‘text/plain’:

‘format’ Formatting parameter for the text, valid values include ‘fixed’ (the default)
and ‘flowed’. Normally you do not specify this manually, since it requires the
textual body to be formatted in a special way described in RFC 2646. See
Section 2.7 [Flowed text], page 15.

Chapter 2: Composing 11

Parameters for ‘application/octet-stream’
‘type’ Type of the part; informal-—meant for human readers (Content-Type).
Parameters for ‘message/external-body”:

‘access-type’
A word indicating the supported access mechanism by which the file may
be obtained. Values include ‘ftp’, ‘anon-ftp’, ‘tftp’, ‘localfile’, and
‘mailserver’. (Content-Type.)

‘expiration’
The RFC822 date after which the file may no longer be fetched. (Content-
Type.)

‘size’ The size (in octets) of the file. (Content-Type.)

‘permission’
Valid values are ‘read’ and ‘read-write’ (Content-Type).

Parameters for ‘sign=smime’:
‘keyfile’ File containing key and certificate for signer.
Parameters for ‘encrypt=smime”:

‘certfile’
File containing certificate for recipient.

2.3 Advanced MML Example

Here’s a complex multipart message. It’s a ‘multipart/mixed’ that contains many parts,
one of which is a ‘multipart/alternative’.

<#multipart type=mixed>

<#tpart type=image/jpeg filename="/rms.jpg disposition=inline>
<#multipart type=alternative>

This is a plain text part.

<#tpart type=text/enriched name=enriched.txt>
<center>This is a centered enriched part</center>
<#/multipart>

This is a new plain text part.

<#tpart disposition=attachment>

This plain text part is an attachment.
<#/multipart>

And this is the resulting MIME message:

Content-Type: multipart/mixed; boundary="=-=-="

12

Emacs MIME Manual

Content-Type: image/jpeg;
filename=""/rms. jpg"
Content-Disposition: inline;
filename=""/rms. jpg"
Content-Transfer-Encoding: base64

/93j/4AAQSkZIRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwc JCQgKDBANDASLDBKkSEwWSUHROE
Hh0aHBwgJC4nICIsIxwcKDcpLDAXNDQOHyc5PTgyPC4zNDL/wAALCAAwWADABAREA/8QAHWAA
AQUBAQEBAQEAAAAAAAAAAAECAWQFBgcICQoL/8QAtRAAAgEDAWIEAWUFBAQAAAF9AQIDAAQR
BRIhMUEGE1FhBy JJxFDKBkaEITOKxwRVSOfAkM2JyggkKFhcYGRo1JicoKSoONTY30Dk6QORF
RkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh41iJipKT1JWW15iZmgK jpKWmp6ip
qrKztLW2t7i5usLDxMXGx8j JytLTINXW19jZ2uHi4+T15uf 06erx8vP09fb3+Pn6/90ACAEB
AAA/AQ/rifFHj1dNuGsrDa0qcSSHkA+gHr XKw+LtWLrMb+RgTyhbr+HSug07xNqVIOfQtZrNI
AyiaE/NuBPOOOPOrvRNES880KOC8TbXXGCv1FPqjrFALDR7ubL7SkTFT/ALWOP1xXgTuXfc7E
sx6nuabrwp4IvvEM8chCxWx0dzn7wz6VOAaB4S07wOp5itowOrDLSY5Pt9K43x066P4xs71m
2QX1GCbA4y0VJI9+1aYORkdK4341yNH4ahCnG66VTION j16IJFbPdX0MS43M4VQE5/yr2vSpLlnw
5ZW8d1CZ8KFX jOPX0/mK6rSPEGt3Angu44fNEReHYNvIH3TzXDeKNOBRX+kSX20uZkicTI0c
L+g7E810ulF jpVtv3bwgB3HJIyK5L4quY/C9sVxk3ij/xx6850u7timtp/wD1pEw3An3Jr3Dw
34gsbWza4nB1hC5LDsaW6+IFgupQyCF3iHH7gA7cO9R9ay7zx6t7aX9 jHCA4smhfBkGCvHGErm
tLQ7hbnRrV1GPkAP1x1/Hr+Ncr8Vzjwrbf8AX6v/AKA9eQRyY1Qk8Yx9K6XTNbkgia2¢ciSIn
7p5Ga9AtteOLTLKO6it4i7dVRFJDcZ4PvXN+JVEMFObILVGXJLSZ4zk jivRPDaeX4bOSHOTC
pOffmua+KkbS+GLVUGTOtT/0B68eeIpIFYjB70+00VXyoO0M9+M1leaWeCLzHPyHGO/NVWvJJm
jQ8KGH1INfQWhXSXmh2c8eArRLwO3HSv/2Q==

Content-Type: multipart/alternative; boundary="==-=-="

This is a plain text part.

Content-Type: text/enriched;
name="enriched.txt"

<center>This is a centered enriched part</center>

This is a new plain text part.

Chapter 2: Composing 13

Content-Disposition: attachment

This plain text part is an attachment.

2.4 Encoding Customization

mm-body-charset-encoding-alist
Mapping from MIME charset to encoding to use. This variable is usually used
except, e.g., when other requirements force a specific encoding (digitally signed
messages require 7bit encodings). The default is
((is0-2022-jp . 7bit)

(i80-2022-jp-2 . 7bit)

(utf-16 . baseb4)

(utf-16be . base64)

(utf-16le . base64))

As an example, if you do not want to have ISO-8859-1 characters quoted-
printable encoded, you may add (iso-8859-1 . 8bit) to this variable. You
can override this setting on a per-message basis by using the encoding MML
tag (see Section 2.2 [MML Definition|, page 9).

mm-coding-system-priorities
Prioritize coding systems to use for outgoing messages. The default is nil,
which means to use the defaults in Emacs, but is (is0-8859-1 is0-2022-jp
utf-8) when running Emacs in the Japanese language environment. It is a
list of coding system symbols (aliases of coding systems are also allowed, use
M-x describe-coding-system to make sure you are specifying correct coding
system names). For example, if you have configured Emacs to prefer UTF-8,
but wish that outgoing messages should be sent in ISO-8859-1 if possible, you
can set this variable to (is0-8859-1). You can override this setting on a per-
message basis by using the charset MML tag (see Section 2.2 [MML Definition],
page 9).
As different hierarchies prefer different charsets, you may want to set mm-
coding-system-priorities according to the hierarchy in Gnus. Here’s an
example:
(add-to-list ’gnus-newsgroup-variables ’mm-coding-system-priorities)
(setq gnus-parameters
(nconc
;; Some charsets are just examples!
>((""cn\\." ;; Chinese
(mm-coding-system-priorities
> (1is0-8859-1 cn-bigh chinese-iso-7bit utf-8)))
(""cz\\.\\|"pI\\." ;; Central and Eastern European
(mm-coding-system-priorities ’(is0-8859-2 utf-8)))

14 Emacs MIME Manual

("~de\\." ;; German language

(mm-coding-system-priorities ’(iso-8859-1 is0-8859-15 utf-8)))
("~fr\\." ;; French

(mm-coding-system-priorities ’(iso-8859-15 is0-8859-1 utf-8)))
(""£j\\." ;; Japanese

(mm-coding-system-priorities
’ (is0-8859-1 is0-2022-jp utf-8)))
(""ru\\." ;; Cyrillic
(mm-coding-system-priorities
>’ (koi8-r is0-8859-5 is0-8859-1 utf-8))))
gnus-parameters))

mm-content-transfer-encoding-defaults
Mapping from MIME types to encoding to use. This variable is usually used
except, e.g., when other requirements force a safer encoding (digitally signed
messages require 7bit encoding). Besides the normal MIME encodings, qp-
or-base64 may be used to indicate that for each case the most efficient of
quoted-printable and base64 should be used.

gp-or-base64 has another effect. It will fold long lines so that MIME parts
may not be broken by MTA. So do quoted-printable and base64.

Note that it affects body encoding only when a part is a raw forwarded message
(which will be made by gnus-summary-mail-forward with the arg 2 for exam-
ple) or is neither the ‘text/*’ type nor the ‘message/*’ type. Even though in
those cases, you can override this setting on a per-message basis by using the
encoding MML tag (see Section 2.2 [MML Definition|, page 9).

mm-use-ultra-safe-encoding
When this is non-nil, it means that textual parts are encoded as quoted-
printable if they contain lines longer than 76 characters or starting with "From
" in the body. Non-7bit encodings (8bit, binary) are generally disallowed. This
reduce the probability that a non-8bit clean MTA or MDA changes the message.
This should never be set directly, but bound by other functions when necessary
(e.g., when encoding messages that are to be digitally signed).

2.5 Charset Translation

During translation from MML to MIME, for each MIME part which has been composed
inside Emacs, an appropriate charset has to be chosen.

If you are running a non-MULE Emacs, this process is simple: If the part contains any
non-ASCII (8-bit) characters, the MIME charset given by mail-parse-charset (a symbol)
is used. (Never set this variable directly, though. If you want to change the default charset,
please consult the documentation of the package which you use to process MIME messages.
See Section “Various Message Variables” in Message Manual, for example.) If there are
only ASCII characters, the MIME charset US-ASCII is used, of course.

Things are slightly more complicated when running Emacs with MULE support. In this
case, a list of the MULE charsets used in the part is obtained, and the MULE charsets are
translated to MIME charsets by consulting the table provided by Emacs itself or the variable
mm-mime-mule-charset-alist for XEmacs. If this results in a single MIME charset, this

Chapter 2: Composing 15

is used to encode the part. But if the resulting list of MIME charsets contains more than
one element, two things can happen: If it is possible to encode the part via UTF-8, this
charset is used. (For this, Emacs must support the utf-8 coding system, and the part must
consist entirely of characters which have Unicode counterparts.) If UTF-8 is not available
for some reason, the part is split into several ones, so that each one can be encoded with a
single MIME charset. The part can only be split at line boundaries, though—if more than
one MIME charset is required to encode a single line, it is not possible to encode the part.

When running Emacs with MULE support, the preferences for which coding system to
use is inherited from Emacs itself. This means that if Emacs is set up to prefer UTF-8,
it will be used when encoding messages. You can modify this by altering the mm-coding-
system-priorities variable though (see Section 2.4 [Encoding Customization], page 13).

The charset to be used can be overridden by setting the charset MML tag (see Section 2.2
[MML Definition], page 9) when composing the message.

The encoding of characters (quoted-printable, 8bit, etc.) is orthogonal to the
discussion here, and is controlled by the variables mm-body-charset-encoding-alist and
mm-content-transfer-encoding-defaults (see Section 2.4 [Encoding Customization],
page 13).

2.6 Conversion

A (multipart) MIME message can be converted to MML with the mime-to-mml function.
It works on the message in the current buffer, and substitutes MML markup for MIME
boundaries. Non-textual parts do not have their contents in the buffer, but instead have
the contents in separate buffers that are referred to from the MML tags.

An MML message can be converted back to MIME by the mml-to-mime function.

These functions are in certain senses “lossy” —you will not get back an identical message
if you run mime-to-mml and then mml-to-mime. Not only will trivial things like the order
of the headers differ, but the contents of the headers may also be different. For instance,
the original message may use base64 encoding on text, while mml-to-mime may decide to
use quoted-printable encoding, and so on.

In essence, however, these two functions should be the inverse of each other. The resulting
contents of the message should remain equivalent, if not identical.

2.7 Flowed text

The Emacs MIME library will respect the use-hard-newlines variable (see Section “Hard
and Soft Newlines” in Emacs Manual) when encoding a message, and the “format=flowed”
Content-Type parameter when decoding a message.

On encoding text, regardless of use-hard-newlines, lines terminated by soft newline
characters are filled together and wrapped after the column decided by fill-flowed-
encode-column. Quotation marks (matching ‘~>* ?’) are respected. The variable controls
how the text will look in a client that does not support flowed text, the default is to wrap
after 66 characters. If hard newline characters are not present in the buffer, no flow encoding
occurs.

You can customize the value of the mml-enable-flowed variable to enable or disable
the flowed encoding usage when newline characters are present in the buffer.

16 Emacs MIME Manual

On decoding flowed text, lines with soft newline characters are filled together and
wrapped after the column decided by fill-flowed-display-column. The default is to
wrap after £ill-column.

mm-fill-flowed
If non-nil a format=flowed article will be displayed flowed.

Chapter 3: Interface Functions 17

3 Interface Functions

The mail-parse library is an abstraction over the actual low-level libraries that are de-
scribed in the next chapter.

Standards change, and so programs have to change to fit in the new mold. For instance,
RFC2045 describes a syntax for the Content-Type header that only allows ASCII characters
in the parameter list. RFC2231 expands on RFC2045 syntax to provide a scheme for
continuation headers and non-ASCII characters.

The traditional way to deal with this is just to update the library functions to parse
the new syntax. However, this is sometimes the wrong thing to do. In some instances it
may be vital to be able to understand both the old syntax as well as the new syntax, and
if there is only one library, one must choose between the old version of the library and the
new version of the library.

The Emacs MIME library takes a different tack. It defines a series of low-level libraries
(‘rfc2047.el’, ‘rfc2231.el’ and so on) that parses strictly according to the corresponding
standard. However, normal programs would not use the functions provided by these libraries
directly, but instead use the functions provided by the mail-parse library. The functions
in this library are just aliases to the corresponding functions in the latest low-level libraries.
Using this scheme, programs get a consistent interface they can use, and library developers
are free to create write code that handles new standards.

The following functions are defined by this library:

mail-header-parse-content-type
Parse a Content-Type header and return a list on the following format:

("type/subtype"
(attributel . valuel)
(attribute2 . value2)

)

Here’s an example:

(mail-header-parse-content-type
"image/gif; name=\"b980912.gif\"")
= ("image/gif" (name . "b980912.gif"))

mail-header-parse-content-disposition
Parse a Content-Disposition header and return a list on the same format as
the function above.

mail-content-type-get
Takes two parameters—a list on the format above, and an attribute. Returns
the value of the attribute.
(mail-content-type-get
>("image/gif" (name . "b980912.gif")) ’name)
= "b980912.gif"

mail-header-encode-parameter
Takes a parameter string and returns an encoded version of the string. This is
used for parameters in headers like Content-Type and Content-Disposition.

18

Emacs MIME Manual

mail-header-remove-comments

Return a comment-free version of a header.

(mail-header-remove-comments
"Gnus/5.070027 (Pterodactyl Gnus v0.27) (Finnish Landrace)")
= "Gnus/5.070027 "

mail-header-remove-whitespace

Remove linear white space from a header. Space inside quoted strings and
comments is preserved.

(mail-header-remove-whitespace
"image/gif; name=\"Name with spaces\"")
= "image/gif;name=\"Name with spaces\""

mail-header-get-comment

Return the last comment in a header.

(mail-header-get-comment
"Gnus/5.070027 (Pterodactyl Gnus v0.27) (Finnish Landrace)")
= "Finnish Landrace"

mail-header-parse-address

Parse an address and return a list containing the mailbox and the plaintext
name.
(mail-header-parse-address
"Hrvoje Niksic <hniksic@srce.hr>")
= ("hniksic@srce.hr" . "Hrvoje Niksic")

mail-header-parse-addresses

Parse a string with list of addresses and return a list of elements like the one
described above.

(mail-header-parse-addresses
"Hrvoje Niksic <hniksic@srce.hr>, Steinar Bang <sb@metis.no>")
= (("hniksic@srce.hr" . "Hrvoje Niksic")
("sb@metis.no" . "Steinar Bang"))

mail-header-parse-date

Parse a date string and return an Emacs time structure.

mail-narrow-to-head

Narrow the buffer to the header section of the buffer. Point is placed at the
beginning of the narrowed buffer.

mail-header—-narrow-to-field

Narrow the buffer to the header under point. Understands continuation headers.

mail-header-fold-field

Fold the header under point.

mail-header-unfold-field

Unfold the header under point.

mail-header-field-value

Return the value of the field under point.

Chapter 3: Interface Functions 19

mail-encode-encoded-word-region
Encode the non-ASCIIT words in the region. For instance, ‘Naive’ is encoded as
‘=7150-8859-17q7Na=EFve?=".

mail-encode-encoded-word-buffer
Encode the non-ASCII words in the current buffer. This function is meant to
be called narrowed to the headers of a message.

mail-encode-encoded-word-string
Encode the words that need encoding in a string, and return the result.

(mail-encode-encoded-word-string

"This is naive, baby")
= "This is =7is0-8859-17q7na=EFve,?= baby"

mail-decode-encoded-word-region
Decode the encoded words in the region.

mail-decode-encoded-word-string
Decode the encoded words in the string and return the result.

(mail-decode-encoded-word-string
"This is =7is0-8859-17q7na=EFve,?= baby")
= "This is naive, baby"

Currently, mail-parse is an abstraction over ietf-drums, rfc2047, rfc2045 and
rfc2231. These are documented in the subsequent sections.

Chapter 4: Basic Functions 21

4 Basic Functions

This chapter describes the basic, ground-level functions for parsing and handling. Covered
here is parsing From lines, removing comments from header lines, decoding encoded words,
parsing date headers and so on. High-level functionality is dealt with in the first chapter
(see Chapter 1 [Decoding and Viewing], page 3).

4.1 rfc2045

RFC2045 is the “main” MIME document, and as such, one would imagine that there would
be a lot to implement. But there isn’t, since most of the implementation details are delegated
to the subsequent RFCs.

So ‘rfc2045.el’ has only a single function:

rfc2045-encode-string
Takes a parameter and a value and returns a ‘PARAM=VALUE’ string. value will
be quoted if there are non-safe characters in it.

4.2 rfc2231

RFC2231 defines a syntax for the Content-Type and Content-Disposition headers. Its
snappy name is MIME Parameter Value and Encoded Word Extensions: Character Sets,
Languages, and Continuations.

In short, these headers look something like this:

Content-Type: application/x-stuff;
title*O*=us-ascii’en’This%20is%20even’,20more?’20;
titlex1x=Y2A%2A%2Afun¥2A%2A%24A%20;
titlex2="isn’t it!"

They usually aren’t this bad, though.
The following functions are defined by this library:

rfc2231-parse-string
Parse a Content-Type header and return a list describing its elements.

(rfc2231-parse-string
"application/x-stuff;
title*O*=us-ascii’en’This%20is%20even’20more%20;
titlex1*=%2A%2A%2Afun%2A%2A%2A%20;
titlex2=\"isn’t it!'\"")
= ("application/x-stuff"
(title . "This is even more **xfun*** isn’t it!"))

rfc2231-get-value
Takes one of the lists on the format above and returns the value of the specified
attribute.

rfc2231-encode-string
Encode a parameter in headers likes Content-Type and Content-Disposition.

22 Emacs MIME Manual

4.3 ietf-drums

drums is an IETF working group that is working on the replacement for RFC822.
The functions provided by this library include:

ietf-drums-remove-comments
Remove the comments from the argument and return the results.

ietf-drums-remove-whitespace
Remove linear white space from the string and return the results. Spaces inside
quoted strings and comments are left untouched.

ietf-drums-get-comment
Return the last most comment from the string.

ietf-drums-parse-address
Parse an address string and return a list that contains the mailbox and the
plain text name.

ietf-drums-parse-addresses
Parse a string that contains any number of comma-separated addresses and
return a list that contains mailbox/plain text pairs.

ietf-drums-parse-date
Parse a date string and return an Emacs time structure.

ietf-drums-narrow-to-header
Narrow the buffer to the header section of the current buffer.

4.4 rfc2047

RFC2047 (Message Header Extensions for Non-ASCII Text) specifies how non-ASCII text
in headers are to be encoded. This is actually rather complicated, so a number of variables
are necessary to tweak what this library does.

The following variables are tweakable:

rfc2047-header-encoding-alist
This is an alist of header / encoding-type pairs. Its main purpose is to prevent
encoding of certain headers.

The keys can either be header regexps, or t.
The values can be nil, in which case the header(s) in question won’t be encoded,

mime, which means that they will be encoded, or address-mime, which means
the header(s) will be encoded carefully assuming they contain addresses.

rfc2047-charset-encoding-alist
RFC2047 specifies two forms of encoding—Q (a Quoted-Printable-like encoding)
and B (base64). This alist specifies which charset should use which encoding.

rfc2047-encode-function-alist
This is an alist of encoding / function pairs. The encodings are Q, B and nil.

rfc2047-encoded-word-regexp
When decoding words, this library looks for matches to this regexp.

Chapter 4: Basic Functions 23

rfc2047-encoded-word-regexp-loose
This is a version from which the regexp for the Q encoding pattern of rfc2047-
encoded-word-regexp is made loose.

rfc2047-encode-encoded-words
The boolean variable specifies whether encoded words (e.g.,
‘=7us-ascii?q?hello?=") should be encoded again. rfc2047-encoded-word-
regexp is used to look for such words.

rfc2047-allow-irregular—q-encoded-words
The boolean variable specifies whether irregular Q encoded words
(e.g., ‘=7us-ascii?q?hello??=’) should be decoded. If it is non-nil,
rfc2047-encoded-word-regexp-loose is used instead of rfc2047-encoded-
word-regexp to look for encoded words.

Those were the variables, and these are this functions:

rfc2047-narrow-to-field
Narrow the buffer to the header on the current line.

rfc2047-encode-message-header
Should be called narrowed to the header of a message. Encodes according to
rfc2047-header-encoding-alist.

rfc2047-encode-region
Encodes all encodable words in the region specified.

rfc2047-encode-string
Encode a string and return the results.

rfc2047-decode-region
Decode the encoded words in the region.

rfc2047-decode-string
Decode a string and return the results.

rfc2047-encode-parameter
Encode a parameter in the RFC2047-like style. This is a substitution for the
rfc2231-encode-string function, that is the standard but many mailers don’t
support it. See Section 4.2 [rfc2231], page 21.

4.5 time-date

While not really a part of the MIME library, it is convenient to document this library here.
It deals with parsing Date headers and manipulating time. (Not by using tesseracts, though,
I'm sorry to say.)

These functions convert between five formats: A date string, an Emacs time structure,
a decoded time list, a second number, and a day number.

Here’s a bunch of time/date/second/day examples:

(parse-time-string "Sat Sep 12 12:21:54 1998 +0200")
= (54 21 12 12 9 1998 6 nil 7200)

24

(date-to-time "Sat Sep 12 12:21:54 1998 +0200")
= (13818 19266)

(float-time ’ (13818 19266))
= 905595714.0

(seconds-to-time 905595714.0)
= (13818 19266 0 0)

(time-to-days ’ (13818 19266))
= 729644

(days-to-time 729644)
= (961933 512)

(time-since ’(13818 19266))
= (6797 9607 984839 247000)

(time-less-p ’ (13818 19266) ’ (13818 19145))
= nil

(subtract-time ’ (13818 19266) ’ (13818 19145))
= (0 121)

(days-between "Sat Sep 12 12:21:54 1998 +0200"
"Sat Sep 07 12:21:54 1998 +0200")
= 5

(date-leap-year-p 2000)
=t

(time-to-day-in-year ’(13818 19266))
= 255

(time-to-number-of-days

(time-since

(date-to-time "Mon, 01 Jan 2001 02:22:26 GMT")))
= 4314.095589286675

Emacs MIME Manual

And finally, we have safe-date-to-time, which does the same as date-to-time, but
returns a zero time if the date is syntactically malformed.

The five data representations used are the following:

date

time

An RFC822 (or similar) date string. For instance: "Sat Sep 12 12:21:54 1998

+0200".

An internal Emacs time. For instance: (13818 26466 0 0).

Chapter 4: Basic Functions 25

seconds A floating point representation of the internal Emacs time. For instance:
905595714.0.

days An integer number representing the number of days since 00000101. For in-
stance: 729644.

decoded time
A list of decoded time. For instance: (54 21 12 12 9 1998 6 t 7200).

All the examples above represent the same moment.

These are the functions available:

date-to-time
Take a date and return a time.

float-time
Take a time and return seconds. (This is a built-in function.)

seconds-to-time
Take seconds and return a time.

time-to-days
Take a time and return days.

days-to-time
Take days and return a time.

date-to-day
Take a date and return days.

time-to-number-of-days
Take a time and return the number of days that represents.

safe-date-to-time
Take a date and return a time. If the date is not syntactically valid, return a
“zero” time.

time-less-p
Take two times and say whether the first time is less (i.e., earlier) than the
second time.

time-since
Take a time and return a time saying how long it was since that time.
subtract-time

Take two times and subtract the second from the first. l.e., return the time
between the two times.

days-between

Take two days and return the number of days between those two days.
date-leap-year-p

Take a year number and say whether it’s a leap year.
time-to-day-in-year

Take a time and return the day number within the year that the time is in.

26 Emacs MIME Manual

4.6 qp
This library deals with decoding and encoding Quoted-Printable text.

Very briefly explained, qp encoding means translating all 8-bit characters (and lots of
control characters) into things that look like ‘=EF’; that is, an equal sign followed by the
byte encoded as a hex string.

The following functions are defined by the library:

quoted-printable-decode-region
QP-decode all the encoded text in the specified region.

quoted-printable-decode-string
Decode the QP-encoded text in a string and return the results.

quoted-printable-encode-region
QP-encode all the encodable characters in the specified region. The third op-
tional parameter fold specifies whether to fold long lines. (Long here means
72.)

quoted-printable-encode-string
QP-encode all the encodable characters in a string and return the results.

4.7 base64

Base64 is an encoding that encodes three bytes into four characters, thereby increasing the
size by about 33%. The alphabet used for encoding is very resistant to mangling during
transit.

The following functions are defined by this library:

base64-encode-region
base64 encode the selected region. Return the length of the encoded text. Op-
tional third argument no-line-break means do not break long lines into shorter
lines.

base64-encode-string
base64 encode a string and return the result.

base64-decode-region
base64 decode the selected region. Return the length of the decoded text. If
the region can’t be decoded, return nil and don’t modify the buffer.

base64-decode-string
base64 decode a string and return the result. If the string can’t be decoded,
nil is returned.

4.8 binhex

binhex is an encoding that originated in Macintosh environments. The following function
is supplied to deal with these:

binhex-decode-region
Decode the encoded text in the region. If given a third parameter, only decode
the binhex header and return the filename.

Chapter 4: Basic Functions 27

4.9 uudecode

uuencode is probably still the most popular encoding of binaries used on Usenet, although
base64 rules the mail world.

The following function is supplied by this package:

uudecode-decode-region
Decode the text in the region.

4.10 yenc
yenc is used for encoding binaries on Usenet. The following function is supplied by this
package:

yenc-decode-region
Decode the encoded text in the region.

4.11 rfc1843

RFC1843 deals with mixing Chinese and ASCII characters in messages. In essence, RFC1843
switches between ASCII and Chinese by doing this:

This sentence is in ASCII.
The next sentence is in GB. {<:Ky2;S{#,NpJ)16HK!#" }Bye.

Simple enough, and widely used in China.
The following functions are available to handle this encoding:

rfc1843-decode-region
Decode HZ-encoded text in the region.

rfc1843-decode-string
Decode a HZ-encoded string and return the result.

4.12 mailcap

The ‘~/.mailcap’ file is parsed by most MIME-aware message handlers and describes how
elements are supposed to be displayed. Here’s an example file:
image/*; gimp -8 s
audio/wav; wavplayer %s
application/msword; catdoc %s ; copiousoutput ; nametemplate=Js.doc
This says that all image files should be displayed with gimp, that WAVE audio files
should be played by wavplayer, and that MS-WORD files should be inlined by catdoc.
The mailcap library parses this file, and provides functions for matching types.
mailcap-mime-data
This variable is an alist of alists containing backup viewing rules.

Interface functions:
mailcap-parse-mailcaps
Parse the ‘~/.mailcap’ file.
mailcap-mime-info
Takes a MIME type as its argument and returns the matching viewer.

Chapter 5: Standards 29

5 Standards

The Emacs MIME library implements handling of various elements according to a (some-
what) large number of RFCs, drafts and standards documents. This chapter lists the
relevant ones. They can all be fetched from http://quimby.gnus.org/notes/.

RFC822
STD11

RFC1036
RFC2045
RFC2046
RFC2047
RFC2048
RFC2049
RFC2231

RFC1843

Standard for the Format of ARPA Internet Text Messages.
Standard for Interchange of USENET Messages

Format of Internet Message Bodies

Media Types

Message Header Extensions for Non-ASCII Text
Registration Procedures

Conformance Criteria and Examples

MIME Parameter Value and Encoded Word Extensions: Character Sets, Lan-
guages, and Continuations

HZ—A Data Format for Exchanging Files of Arbitrarily Mixed Chinese and
ASCII characters

draft-ietf-drums-msg-fmt-05.txt

RFC2112
RFC1892

RFC2183

RFC2646

Draft for the successor of RFC822
The MIME Multipart/Related Content-type

The Multipart/Report Content Type for the Reporting of Mail System Admin-
istrative Messages

Communicating Presentation Information in Internet Messages: The Content-
Disposition Header Field

Documentation of the text/plain format parameter for flowed text.

http://quimby.gnus.org/notes/

Chapter 6: GNU Free Documentation License 31

6 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft,” which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document,”
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you.” You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

32

Emacs MIME Manual

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements,” “Dedications,” “Endorsements,” or “History.”) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Chapter 6: GNU Free Documentation License 33

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

34

Emacs MIME Manual

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History,” Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications,” Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements.” Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Chapter 6: GNU Free Documentation License 35

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements,” provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but

you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements,” and any sections Entitled “Dedications.” You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted

36

10.

Emacs MIME Manual

document, and follow this License in all other respects regarding verbatim copying of
that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements,” “Dedications,” or “His-
tory,” the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Chapter 6: GNU Free Documentation License 37

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License.’’

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with... Texts.” line with this:

with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being
list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Chapter 7: Index

7 Index

baseB4. ..o 26
base64-decode-region 26
base64-decode-string........... ..o 26
base64-encode-region 26
base64-encode-string............ 26
binhex 3, 26
binhex-decode-region 26

C

charsets 14
Chinese ...t 27
ComPOSING .+« oottt 9

EINACS-SOUTCES . « + « v vt tee et e ee e ee e ee s 3

F

format=flowed............ 15
forward....... 3

G

ietf-drums-get-comment........................ 22
ietf-drums-narrow-to-header 22
ietf-drums-parse-address 22
ietf-drums-parse-addresses 22
ietf-drums-parse-date 22
ietf-drums-remove-comments................... 22
ietf-drums-remove-whitespace.................. 22
interface functions............. 17

39
M
Macintosh...........o o i 26
mail-content-type-get....... oL 17
mail-decode-encoded-word-region 19
mail-decode-encoded-word-string............... 19
mail-encode-encoded-word-buffer............... 19
mail-encode-encoded-word-region 19
mail-encode-encoded-word-string............... 19
mail-header-encode-parameter 17
mail-header-field-value......................... 18
mail-header-fold-field 18
mail-header-get-comment 18
mail-header-narrow-to-field 18
mail-header-parse-address...................... 18
mail-header-parse-addresses.................... 18
mail-header-parse-content-disposition 17
mail-header-parse-content-type................. 17
mail-header-parse-date......................... 18
mail-header-remove-comments 18
mail-header-remove-whitespace 18
mail-header-unfold-field........................ 18
mail-narrow-to-head 18
mail-parse. 17
mail-parse-charset 14
mailcap-mime-data 27
mailcap-parse-mailcaps 27
MIME Composingcocoouiiieiioan.. 9
MIME Meta Language.......................... 9
mime-to-mml........ . o 15
mm-attachment-override-types.................. 5
mm-automatic-display 5
mm-automatic-display-p 4
mm-automatic-external-display 5
mm-body-charset-encoding-alist................ 13
mm-coding-system-priorities 13
mm-content-transfer-encoding-defaults 14
mm-default-directory L 7
mm-destroy-part.........o i 4
mm-discouraged-alternatives.................... 5
mm-display-part.......... ... oo 4
mm-enable-external............ ... o oo 7
mm-external-terminal-program.................. 7
mm-file-name-collapse-whitespace 7
mm-file-name-delete-control 7
mm-file-name-delete-gotchas 7
mm-file-name-delete-whitespace................. 7
mm-file-name-replace-whitespace................ 8
mm-file-name-rewrite-functions 7
mm-file-name-trim-whitespace 7
mm-fill-flowed 16
mm-handle-buffer.............. o 4
mm-handle-disposition............. 4
mm-handle-encoding............................ 4

mm-handle-set-undisplayer...................... 4

40

mm-handle-type...... oL 4
mm-handle-undisplayer 4
mm-inlinable-p o 4
mm-inline-images-max-proportion............... 6
mm-inline-large-images 6
mm-inline-media-tests o oL 5
mm-inline-override-types.............. 6
mm-inline-text-html-with-images................ 6
mm-inline-text-html-with-w3m-keymap 7
mm-inlined-types......... L 5
mm-interactively-view-part 5
mm-keep-viewer-alive-types 5
mm-mime-mule-charset-alist 14
mm-path-name-rewrite-functions................ 8
mm-pipe-part........c.c.i i 4
mm-remove-part 4
mm-save-part............o oo oo 4
mm-text-html-renderer.......................... 6
mm-tmp-directoryo i 7
mm-use-ultra-safe-encoding 14
mm-uu-configure-list......... oL 3
mm-uu-diff-groups-regexp............. 3
MIM-UU-EMAaCS-SOUTCES-TEZEXP .+ v v v 3
mm-uu-extract ... oo 4
mm-w3m-safe-url-regexp........ L 7
MML . .o 9
mml-generate-mime........... o oL 9
mml-to-mime......... ..o 15
MULE ... 14

pgp-encrypted i 3
pEP-Key .o 3
pEP-signed. 3
POSESCIIPE « v v 3
Q

quoted-printable-decode-region................. 26
quoted-printable-decode-string 26
quoted-printable-encode-region................. 26
quoted-printable-encode-string................. 26

Emacs MIME Manual

TfCl843 .. 27
rfc2045-encode-string oL 21
rfc2047-allow-irregular-q-encoded-words 23
rfc2047-charset-encoding-alist 22
rfc2047-decode-region........... 23
rfc2047-decode-string i i 23
rfc2047-encode-encoded-words 23
rfc2047-encode-function-alist 22
rfc2047-encode-message-header................. 23
rfc2047-encode-parameter. 23
rfc2047-encode-region.......... 23
rfc2047-encode-string oL 23
rfc2047-encoded-word-regexp. ... 22
rfc2047-encoded-word-regexp-loose 23
rfc2047-header-encoding-alist 22
rfc2047-narrow-to-field......... oL L 23
rfc2231-encode-stringo 21
rfc2231-get-value ool 21
rfc2231-parse-string......... oL 21

Unicode.......ooiiiiii e 14
L AP 14
L0 P 3
uudecode . ..ot 27
uudecode-decode-region............. 27
UUENCOAE . .\ttt e e e 27

v

verbatim-marks. i 3

Y

VEIC ¢ o ettt ettt ettt 3, 27
yenc-decode-region 27

	Emacs MIME
	Decoding and Viewing
	Dissection
	Non-MIME
	Handles
	Display
	Display Customization
	Files and Directories
	New Viewers

	Composing
	Simple MML Example
	MML Definition
	Advanced MML Example
	Encoding Customization
	Charset Translation
	Conversion
	Flowed text

	Interface Functions
	Basic Functions
	rfc2045
	rfc2231
	ietf-drums
	rfc2047
	time-date
	qp
	base64
	binhex
	uudecode
	yenc
	rfc1843
	mailcap

	Standards
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

